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ABSTRACT

In tropical regions, shifting from forests and traditional agroforestry to intensive plantations generates
conflicts between human welfare (farmers’ demands and societal needs) and environmental protection.
Achieving sustainability in this transformation will inevitably involve trade-offs between multiple ecological
and socioeconomic functions. To address these trade-offs, our study used a new methodological approach
allowing the identification of transformation scenarios, including theoretical landscape compositions that
satisfy multiple ecological functions (i.e., structural complexity, microclimatic conditions, organic carbon in
plant biomass, soil organic carbon and nutrient leaching losses), and farmers needs (i.e., labor and input
requirements, total income to land, and return to land and labor) while accounting for the uncertain provision
of these functions and having an actual potential for adoption by farmers. We combined a robust, multi-
objective optimization approach with an iterative search algorithm allowing the identification of ecological
and socioeconomic functions that best explain current land-use decisions. The model then optimized the
theoretical land-use composition that satisfied multiple ecological and socioeconomic functions. Between
these ends, we simulated transformation scenarios reflecting the transition from current land-use composition
towards a normative multifunctional optimum. These transformation scenarios involve increasing the number
of optimized socioeconomic or ecological functions, leading to higher functional richness (i.e., number of
functions). We applied this method to smallholder farms in the Jambi Province, Indonesia, where traditional
rubber agroforestry, rubber plantations, and oil palm plantations are the main land-use systems. Given
the currently practiced land-use systems, our study revealed short-term returns to land as the principal
factor in explaining current land-use decisions. Fostering an alternative composition that satisfies additional
socioeconomic functions would require minor changes (“low-hanging fruits”). However, satisfying even a single
ecological indicator (e.g., reduction of nutrient leaching losses) would demand substantial changes in the
current land-use composition (“moonshot”). This would inevitably lead to a profit decline, underscoring the
need for incentives if the societal goal is to establish multifunctional agricultural landscapes. With many oil
palm plantations nearing the end of their production cycles in the Jambi province, there is a unique window
of opportunity to transform agricultural landscapes.
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V. von Grofs et al.

1. Introduction

Improving human well-being without further exceeding planetary
boundaries is one of the most pressing problems of this time. This
challenge and the often resulting land-use conflicts are particularly
evident in tropical regions, where highly vulnerable ecosystems with
high biodiversity and utmost importance for the climate system clash
with the needs of (smallscale-)landholders to sustain livelihoods and
compete in globalized markets (Sayer et al., 2013; Feintrenie et al.,
2010a; Grass et al., 2020). One such example is the Jambi Province of
Sumatra, Indonesia, where the share of land covered with rainforest de-
creased by 15 percentage points between 1990 and 2013. This decrease
is primarily due to conversion to agricultural purposes (Grass et al.,
2020), predominately managed by smallholders that rely on globally
demanded oil palm (Elaeis guineensis Jacq.) and rubber (Hevea brasilien-
sis Miill. Arg.) products as their primary sources of income (Chrisendo
et al.,, 2022). It is unclear how such monoculture-agrosystems could
undergo a sustainable transformation towards “multifunctional land-
scapes” (Sayer et al., 2013) that fulfill farmers’ needs (e.g., increasing
income or reducing labor and input requirements) and meet rising
global demands for agricultural and forestry products, while also sup-
porting multiple ecological functions (e.g., increasing organic carbon
in plant biomass or reducing nutrient leaching losses) (Clough et al.,
2016; Grass et al., 2020; Martin et al., 2022).

Past research has shown that changing land-use composition can
significantly enhance the multifunctionality (i.e., the ability to inte-
grate multiple sustainability goals) of agricultural landscapes (Neyret
et al.,, 2023). Suggested transformation pathways include, for exam-
ple, increasing land-use diversification of farms and landscapes (La-
vorel et al.,, 2022; Neyret et al.,, 2023) and increasing the shares of
biodiversity-based land-use management, such as agroforestry (Gosling
et al., 2020b) and reduced-input agriculture (Kremen and Merenlender,
2018; Iddris et al., 2023).

Achieving such multifunctional landscapes (Sayer et al., 2013) will
inherently involve trade-offs among the multiple goals that are of-
ten quantified as ecosystem functions or services (Raudsepp-Hearne
et al., 2010; Allan et al., 2015). Even if, in theory, compromise land-
use compositions that sufficiently satisfy all competing needs can be
identified, they may not be acceptable for farmers if the suggested land-
use composition and land management require substantial changes,
affecting the financial farm capacities but also cultural identity or social
networks too much (Martin et al., 2022). The challenge in land-use
science remains as follows: how can such theoretically ideal multifunc-
tional landscapes be identified and how can transformation pathways,
including compromise solutions, best be linked with current land-use
composition and preferences.

To identify such compromise land-use compositions, land-use al-
location models have been used to simulate land-use trajectories and
explore trade-offs among socioeconomic and ecological goals under
different scenarios or objectives (Bateman et al., 2016; Zhang et al.,
2016; Kaim et al., 2021; Wesemeyer et al., 2023). Agent-based models
(ABMs), for example, have been used to investigate the effects of
crop prices on area exchange between rubber and oil palm (Dislich
et al., 2018), or to explore the effectiveness of payments for ecosys-
tem services (Villamor et al.,, 2014) on different land-use types in
Jambi Province, Sumatra, Indonesia. These types of models simulate
the decision-making of individual agents (e.g., farmers) based on a set
of predetermined rules or scenarios (Bonabeau, 2002; Dislich et al.,
2018). As an alternative to pure simulation approaches, multi-criteria
optimization has emerged to explore trade-offs between ecological
and economic functions or goals (see extensive review by Kaim et al.
(2018)). Two such examples are Pareto optimization and scalarization-
based methods. Pareto optimization identifies potentially “efficient”
land-use compositions that provide specific services or functions with-
out worsening one or more alternative goals (Verstegen et al., 2017;
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Andreotti et al., 2018; Kaim et al., 2020). Scalarization-based meth-
ods, conversely, work to achieve “multifunctionality” in one objective
function, as the selection among the entire set of solutions can be
demanding (Knoke et al., 2016; Kaim et al., 2018).

To quantify “multifunctionality” in one objective function, most re-
search builds on the concept of ecosystem functions and services (Byrnes
et al., 2014; Holting et al., 2019a). For example, based on the concept
of ecosystem services, Holting et al. (2019a) and Holting et al. (2019b)
differentiate between ecosystem service richness, abundance, and di-
versity. Richness is quantified by the number of services provided,
abundance by the number of services, and diversity by various indices,
e.g., the Shannon Index, evenness, or weight of the dominant ecosystem
service. However, Holting et al. (2019b) also point out that those defini-
tions and measurements of multifunctionality assessments only weakly
capture the balance of supply among different ecosystem functions
or services. Threshold approaches, which define a required minimum,
could offer potential solutions for this problem. For example, Grass
et al. (2020) used a multifunctional threshold approach and an Evolu-
tionary Optimization Algorithm (EA) to explore trade-offs and synergies
between multidiversity, multifunctionality, and profitability in Jambi.
Land-use allocation models using EA and other non-linear optimization
have so far often disregarded uncertainty associated with the actual
provision of the functions under limited information, measurement
and prediction errors, climate change, and heterogeneous behavior.
Additionally, threshold approaches that do not calculate the full range
of possible levels of set thresholds often require normative, and thus
sometimes arbitrary, decisions.

What is missing so far, is a modeling approach that (1) systemati-
cally searches for land-use allocations that satisfy different degrees of
“multifunctionality” while also (2) accounting for the current land-use
composition in transformation pathways and which is (3) still compu-
tationally feasible and efficient to allow for participatory approaches
in land-use planning (Schliiter et al., 2019). Computationally inten-
sive simulation models may risk excluding a “truly multifunctional”
landscape composition by focusing on a pre-selected set of scenarios.
In contrast, optimization approaches are usually quite abstract in that
they plan theoretical optimal land-use compositions irrespective of
current land-use compositions. In this study, we strive to overcome
these weaknesses by developing a land-cover/-use optimization ap-
proach that applies a normative approach in a positive way. We aim
to identify transformation scenarios of land-use allocation, including
potential compromise solutions requiring the least change from current
to theoretical optimal multifunctional landscape.

To accomplish this, we further develop and extend the scalarization-
based optimization approach by Knoke et al. (2016) and Husmann
et al. (2022) for multiple objectives, which is a type of reference
point method (Knoke et al., 2020). The approach directly integrates
uncertainty into the objective function and thus considers risk-reducing
effects of land-use diversification (Knoke et al., 2016). The optimiza-
tion problem is solvable through Linear Programming, ensuring low
computational time and required resources (Husmann et al., 2022).
However, the approach has mainly been used as a static approach to
explore the effect of different ecological and economic functions on
desirable landscape composition, but not for identifying transformation
pathways (Gosling et al., 2020b; Reith et al., 2020). We use an earlier
idea by Gosling et al. (2020b), who introduced a positive application of
the robust multi-criteria optimization by Knoke et al. (2016) to identify
the socioeconomic and ecological functions best explaining current
land-use composition. We extend this approach conceptually by look-
ing at a gradient of increasing ecological and socioeconomic function
richness (i.e., multifunctionality), which we interpret as transformation
scenarios. Methodologically, we extended it by developing an efficient
R function for deriving this automatized succession of a large number
of optimizations. This function (called autoSearch) was than added to
the R package optimLanduse (Husmann et al., 2022).
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We test the newly developed land-use allocation model on the
case of smallholder farms in Jambi Province, Sumatra, Indonesia, a
region crucial to global oil palm and natural rubber production. The
smallholder farms are dominated by three land-use systems: a tradi-
tional rubber agroforestry system (here: ’jungle rubber’), rubber plan-
tations, and oil palm plantations. The province has undergone notable
agricultural expansion, causing conversion of rainforests and jungle
rubber into intensive plantations (Grass et al., 2020; Huang et al.,
2022). Due to strong economic and policy incentives for oil palm in
Jambi in the last two decades and the crop’s productive life of about
25 years, large areas of current oil palm plantations need to soon be
replanted (Woittiez et al., 2017; Petri et al., 2022). Hence, our model
and its findings can be very useful in this unique window of opportunity
for transforming agricultural landscapes.

We aim to contribute to the following research questions:

1. What does a multifunctional (aggregated) agricultural landscape
composition for the Jambi Province look like and how much
does it deviate from the currently observed land-use composi-
tion? (RQ1)

2. Which ecological and/or socioeconomic function(s) likely dri-
ve(s) current land-use decisions? (RQ2)

3. How would an increase in function richness change the compo-
sition and performance of optimized land-use compositions that
provide selected ecological and socioeconomic functions? (RQ3)

We use our model to investigate the ecological and socioeconomic
functions driving current land-use decisions and explore the functions
that can be achieved with minor (“low-hanging fruit”) versus major
(“moonshot”) changes in land-use composition, considering their un-
certain provision. Our results can assist policy-makers and serve as a
basis for co-designing future land-use systems and contributing to more
sustainable agricultural landscape development.

2. Materials and methods
2.1. Concept and definitions

Our approach consists of three main steps: (1) a normative step to
identify the theoretical optimal land-use composition of a multifunc-
tional landscape based on the land-use optimization model by Knoke
et al. (2016) and Husmann et al. (2022) covering all considered eco-
logical and socioeconomic functions, (2) a quasi-positive application
of the optimization approach to better understand the ecological and
socioeconomic functions driving current land-use decisions, and (3)
a simulation—optimization study to calculate potential transformation
scenarios from (2) to (1), reflecting the transition from current land-use
compositions towards the normative “multifunctional” optimum.

In line with Holting et al. (2019b), we refer to multifunctionality as
the capacity of a given land-use composition to supply multiple ecosys-
tem functions or services. However, the ecological and socioeconomic
functions used here do not solely consist of distinct ecosystem functions
or directly represent ecosystem services. Instead, the set of functions
combines ecological and socioeconomic functions, where the ecological
functions represent ecosystem functions in part directly and in part
nutrient pools and ecosystem properties, which are important drivers
of ecosystem functioning (Garland et al., 2021), and the socioeconomic
functions (Gosling et al., 2020b) describe various needs from a farmer’s
perspective. Thus, we aim to integrate the ecological and socioeco-
nomic spheres of social-ecological systems (Schliiter et al., 2019). In
our approach, functions are reflected by indicators (see Section 2.3),
which serve as proxies for the different ecological and socioeconomic
functions. These indicators are used as the input data for optimizing
land-use combinations.

We sought to combine different perspectives towards multifunction-
ality by (a) accounting for “function richness” (i.e., the number of
functions considered in the optimization) and (b) considering the aspect
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of a balanced provision by searching for compromise solutions that, for
each level of function richness, maximize the minimum achievement
level across all ecological and socioeconomic functions. The minimum
achievement level of all functions can be interpreted as the robust
multifunctionality of the respective landscape composition. Compared
to a threshold approach, robust multifunctionality does not show how
many functions reach a certain threshold, but which minimum per-
formance level is guaranteed across all considered functions. (c) We
incorporated robustness, as one component of resilience (Meuwissen
et al.,, 2019), by searching for this minimum achievement under a
range of uncertainty scenarios. These may reflect different stakeholder
expectations or uncertainty in future ecosystem function provisioning.

This understanding of multifunctionality is used as a normative goal
of a public decision-maker in Step 1 (RQ1) of our approach (Fig. 1).
Building on the robust multi-criteria land-use optimization model (fur-
ther details in Section 2.2), we derived the average farm composition
(with farms being aggregated to a virtual agricultural landscape com-
position) best fulfilling the above-mentioned criteria of a robust level
of function provisioning across all considered ecological and socioeco-
nomic functions. The objective function assumes that decision-makers
prefer solutions that satisfy the provision across multiple functions
rather than maximizing single ones (“satisficing behavior” (Simon,
1955)) and that the decision-maker accounts for uncertainty in the
provision of these functions (Findlater et al., 2019; Knoke et al., 2023).
The resulting average farm composition thus achieves a “good enough”
performance for all ecological and socioeconomic functions (Findlater
et al.,, 2019) by maximizing the minimum achievement level of all
possible scenarios instead of, e.g., maximizing the average of all sce-
narios. This theoretical optimum was then compared to the current
land-use composition. In line with Knoke et al. (2016) we quantified
differences between land-use compositions by the Bray—Curtis measure
of dissimilarity (BC) (Eq. (11)).

We explored differences in the land-use composition optimized for
provisioning of all functions considered versus the current land-use
composition, which we assumed to be driven by a smaller set of
functions. Therefore, in Step 2 (RQ 2, Fig. 1), we used the optimiza-
tion as a quasi-positive approach to identify the bundle of functions
resulting in the land-use composition most similar (i.e., lowest BC) to
the current land-use composition, while assuming typically risk-averse
private smallholder decision-makers (Bowman and Zilberman, 2013;
Nielsen et al., 2013). This required developing an efficient way to calcu-
late a large number of optimizations using all potential combinations
of indicators and filtering them by the lowest BC (further details in
Section 2.2.2).

We analyzed potential transformation scenarios towards multifunc-
tional landscape compositions in Step 3 (Fig. 1). Starting from the
number and identity of indicators best explaining the current land-
use composition, we cumulatively added indicators, i.e., increasing
multifunctionality in terms of function richness (Fig. 1). The iden-
tity of this added function (i.e., its respective indicator) was selected
according to the lowest BC when comparing resulting and current land-
use compositions. This allowed us to identify “low-hanging fruits” of
providing additional functions that would, in our model, only require
minor changes in land-use composition. While our non-spatially explicit
approach is not designed to identify exact land-use compositions and
configurations for landscape planning, it could help to understand
mismatches between the identified objectives driving the current land-
use composition and the composition that simultaneously optimizes
all indicators (highest function richness). Furthermore, it can help to
identify trade-offs and synergies between compositions with different
function richness.
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Fig. 1. Conceptual overview of the research approach. Step 1 uses a set of indicators reflecting multiple ecological and socioeconomic functions to create an optimized multifunctional
landscape composition. The resulting multifunctional composition is compared to the currently observed composition using the Bray—Curtis measure of dissimilarity. In Step 2, the
iterative search function optimLanduse::autoSearch from the R package optimLanduse is used to identify which indicator(s) in the objective function lead(s) to a land-use composition
that approximates the currently observed land-use allocation, assuming a risk-averse decision-maker. This is done by autoSearch generating all possible indicator combinations and
sequentially computing the respective optimization. In Step 3, the list covering all possible combinations is used to create a series of compositions (transformation scenarios) with
increasing function richness, starting with the composition best explaining the current land-use composition (Step 2) and ending with the multifunctional landscape composition

(Step 1).
2.2. Model description

2.2.1. Defining a multifunctional landscape portfolio using reference point
optimization

In order to define a theoretical optimal multifunctional landscape
(i.e., to elaborate RQ1), we used the robust optimization approach ac-
cording to Knoke et al. (2016) by applying the R package optimLanduse

of Husmann et al. (2022). The output of the model is a portfolio, which
we defined as a land-use composition that includes both the number of
land-use options and their proportions. The concept of this optimization
approach is to minimize underperformance of the worst-performing
indicator in the optimum. Underperformance is defined here as the
difference (distance) between actual fulfillment of that indicator in
the optimum and its hypothetical best fulfillment. This distance g
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can thus be interpreted as the minimum fulfillment a landscape can
provide given the functions considered in the objective. Indicators
serve as proxies for respective ecological and socioeconomic functions.
Each indicator has a mean value and an individual uncertainty. These
measures are taken to calculate individual indicator best- and worst-
case estimates (Eq. (4)), which are then used to create uncertainty
scenarios by combining all estimates of all indicators. The total number
of uncertainty scenarios (Ng) is thus calculated by multiplying the
possible combinations per indicator (N, = 2¥L; N, = number of land-
use options) by the number of indicators considered (Ng = Ny - Ny;
N; = number of indicators). The optimal landscape portfolio is the
portfolio that minimizes maximum distances (d;,) across all uncertainty
scenarios. The method’s philosophy is that the worst-performing in-
dicator in the worst-possible scenario solely determines the solution.
Better-performing indicators do not compensate for lower-performing
indicators (Knoke et al., 2020).

Consequently, the objective is to minimize maximum distance g,
which, according to Husmann et al. (2022), can be expressed as

min g, (€9)
with
B =max(d,,), with

i € I, being the set of indicators, and

(2)
u € U, being the set of individual

uncertainty scenarios for i.

p represents the worst-performing indicator in the worst-performing
scenario by means of the distance between the actual level of this indi-
cator in the optimum and its best-achievable level. All other indicators
perform better (or equally) than g, ensuring the model’s robustness.
Since this minimum distance to the best-possible achievable indicator
level must be held by all indicators in the optimum, # also determines
the limit of the right-hand sides of all constraints. The distances d,,,
representing this gap between actual and best-achievable level under
uncertainty, are calculated as

maXRi)Riu i more is better,
diy = R.bTin‘;ﬂ?}({“f- ). . 3
—w———iw if less is better.
6min,max,u

The number of distances corresponds to the number of all uncer-
tainty scenarios Ng. The best achievable level max(R;;,) is defined by
the maximum among all uncertainty-adjusted indicators in scenario u.
The distances d;, are normalized by dividing them by the range be-
tween the maximum and minimum values of the uncertainty-adjusted
indicators for each uncertainty scenario i, max,, -
Pessimistic estimate:

_ {RH + fu-SDy;
" Rjj= 1y, SDy;

if more is better,
if less is better. @

Optimistic estimate:
Ry = Ry;.

R;;, are the uncertainty-adjusted indicators, which are composed
of the indicators’ mean values R;;, their respective uncertainties SD;,
and a factor f, able to consider differing preferences towards risk in
the optimization. f, enables modification of the input uncertainties
and thereby changes the risk setting of a stakeholder without changing
the input data. Within the reasonable range of f, = 0 (no aversion
against uncertainty) and f, = 3 (highly risk-averse), we assumed a
moderate risk aversion (f, = 2). For the pessimistic estimate, we added
or subtracted it from R;; (Eq. (4)). For the optimistic outcome, the mean
indicator value is directly taken. The scenarios cover each combination
of pessimistic and optimistic outcomes for all indicators.

R, = Z Ry - ay, ()

leL
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Multiplying the uncertainty-adjusted indicator values of each un-
certainty scenario R, by the shares of the respective options of the
landscape portfolio g; gives the actual achieved level for a given
landscape portfolio R;,. The individual land-use options / add up to
the set of all land-use options L. It follows that interactions between
the land-use options are not integrated, as the options are additively
connected. For this reason, neither spatial correlations nor other types
of correlations between the alternatives can be accounted for in the
optimization.

We widened the uncertainty space to not overly constrain the
state space of the distances and to guarantee robust results (Gosling
et al., 2021; Husmann et al., 2022). Thus, the maximum and minimum
uncertainty-adjusted indicator R;;,, used in Eq. (3), is calculated with
a higher uncertainty factor than R,

R = Ry + f; - SDy
Ri;—f;-SDy

if more is better,

liu

. . (6)
if less is better.

We opted for a widened uncertainty space of f; = 3. This affected
Sminmax,, 10 EQ. (3) which was then calculated based on these new
max(Rfl.M) and min(R;‘iu). The calculation of R;, (Eq. (5)) still remained
on the uncertainty-adjusted indicator R;;,, with f, = 2.

The following restrictions are technical and limit the parameter
space of possible options.

Z a, =1, and (7)
leL
4 >0,vlel ®

The last restriction relates to distances shown in Eq. (2). Each
distance d;, may, in any case, only be as large as the distance of the
worst-performing scenario of the worst-performing indicator ().

dy, <p.Viel, andVu € U, ©)

2.2.2. Identifying current drivers of land-use decisions

To identify and understand indicators driving current land-use deci-
sions (RQ2), we extended the R package optimLanduse by an iterative R
search function, optimLanduse::autoSearch. The autoSearch function gen-
erates distinct and independent optimizations with differing indicator
sets while all other settings remain unchanged. To do so, autoSearch
generates all possible indicator combinations and calculates the respec-
tive optimization sequentially. A detailed overview of autoSearch was
added to the README of the R package optimLanduse (Husmann et al.,
2022). The total number of possible indicator combinations Ny results
from

Ny =2Nr —1, 10)

with N; as the total number of unique indicators provided in the
coefficient table.

Out of this list, we used the Bray—Curtis measure of dissimilarity
(BC) to identify the set of ecological and socioeconomic functions,
resulting in an optimized land-use portfolio with the lowest dissimi-
larity BC, . ps/q compared to the current land-use portfolio. The BC is
calculated as

Imax

1 opt ~ U 0bs/all
Bcopr,abs/all = D) * 100, an

with g; being the proportion of land-use option 1 for the optimized
portfolio (index opt) and either the observed land-use portfolio (index
obs) or the land-use portfolio including all ecological and socioeco-
nomic indicators (index all). BC,..p/q 1S close to 100 with a high
dissimilarity and close to 0 with a low dissimilarity.



V. von Grofs et al.

2.2.3. Simulation—optimization of transformation scenarios

The derived list with all possible indicator combinations (generated
by R optimLanduse::autoSearch) is used to create an interpretable and
manageable result list by filtering and ordering all of the calculated
list entries (RQ3). The starting point was always the portfolio best
explaining the current land-use decision (Section 2.2.2). To this starting
point, additional portfolios were added that met the following three
criteria:

» The set of indicators from the previous land-use portfolio is
considered.

» The previous indicator set is extended by one additional indicator.

» BC is as close as possible to the portfolio best explaining the
currently observed land-use portfolio.

These three criteria ensured that one more indicator was added to
the indicator set of the previous portfolio. The portfolio optimized for
this new indicator set offers the slightest difference from the portfolio
that best explains the current land-use decision (measured through the
BC, Section 2.2.2). This allowed us to increase the function richness
between the portfolios and analyze which indicators are achievable
with minor land-use composition changes and which require substan-
tial changes. The outcome is a series of portfolios with increasing
function richness (hereafter: “transformation scenarios”), starting with
the portfolio best explaining the current land use and ending with
the multifunctional landscape, which includes all indicators in the
optimization.

To analyze the robust performance of optimized land-use portfo-
lios, the guaranteed minimum achievement indicator level (GMAL)
was calculated. GMAL is calculated by subtracting g (Eq. (1)) from
the maximum achievable level. This GMAL can be interpreted as the
degree of minimum indicator fulfillment level across all indicator sets
and uncertainty scenarios of each portfolio and is used hereafter as
a measure of robust performance. We calculated GMAL from three
perspectives:

« for each optimized portfolio of the transformation scenario to-
wards the multifunctional landscape portfolio. Within each port-
folio, each indicator of the optimized indicator set reaches at least
this level (robust performance of considered functions).

for solely indicator(s) best explaining the current land-use deci-
sion. Thus, only how this currently important indicator set per-
forms in the different portfolios with increasing function richness
(robust performance of currently important function(s)).

for all ten indicators for each portfolio with increasing func-
tion richness, i.e., the performance that is guaranteed achievable
across all 10 indicators when assuming the land-use shares of the
portfolios from function richness 1 to 10 (robust multifunctional-
ity).

In general, the model requires only a small set of input information
(indicators’ mean values and their respective uncertainties). This small
data requirement, in combination with the openly available R package
optimLanduse (see Data availability), including the new autoSearch func-
tion, and the explanation provided in this section, enables interested
researchers to straightforwardly apply the model to their study regions
with different land-cover types and indicators where the required input
information can be provided. Here, we exemplify the model using a
database of ecological and socioeconomic functions for Jambi Province,
Indonesia.

2.3. Case study example

Our analyses built on an extensive database of the interdisciplinary
project “Ecological and Socioeconomic Functions of Tropical Lowland
Rainforest Transformation Systems” (EFForTS). EFForTS conducted re-
search in the Jambi Province, Indonesia, including environmental pro-
cesses, biota and ecosystems, and the human dimension (Drescher et al.,
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2016). We selected five ecological and five socioeconomic functions
from available data to incorporate aboveground, belowground, cli-
mate, and socioeconomic aspects, each represented by one measured
or surveyed indicator (Table 1). We selected the ten ecological and
socioeconomic functions and the respective indicators from the entire
extensive database based on three criteria: (1) they meet the technical
requirements needed for the optimizer (see Sections 2.2 and 4.2), (2)
they are only slightly correlated, and (3) they were found to be impor-
tant for decision-making based on expert knowledge from several talks
and discussions with scientists and stakeholders as well as previous
studies (Table 1).

The ecological indicators are Stand Structural Complexity index,
Air Temperature 95th percentile, Carbon Total Biomass, Soil Organic
Carbon, and Total Dissolved Nitrogen. Socioeconomic indicators refer
to the farmer’s perspective. In order to get a comprehensive picture, it
is important to consider not only the indicator Profit but also further
aspects of farmers’ everyday lives relevant to their decision-making,
e.g., Labor and Material Cost, Revenue, and Profit per Labor Cost
(Table 1), even if some of the corresponding indicators are slightly
correlated. As data input for the optimizer, we calculated the indicators’
mean values and their uncertainties for each land-use type of the study
region (Table 2). We used an equal number of socioeconomic and
ecological functions to weigh both perspectives equally.

Ecological data was collected from the core plots of the overall
research design (Drescher et al., 2016) during the years 2012 and 2016:
Eight 50 m x 50 m plots were established for four common land-
use systems in the Jambi Province (rubber plantation, jungle rubber,
oil palm plantation, and primary degraded forest (Margono et al.,
2014)), resulting in a total of 32 plots. Jungle rubber is a traditional
agroforestry system and describes a secondary forest enriched with
rubber trees (Gouyon et al., 1993).

All oil palm and rubber plantation plots were established in small-
holder farms. Smallholder farms contribute significantly to the planta-
tion economy in Jambi: 71% of oil palm area and 99% of rubber area
is managed by them (BPS-Statistics Indonesia, 2022b,a). We excluded
primary degraded forest in our main analyses because land conversions
of agricultural land to primary degraded forest are not feasible within
a reasonable time frame (Martin et al., 2022).

We used an extensive household survey carried out in 2018 (Sib-
hatu, 2019) to calculate the socioeconomic indicators’ mean values
and uncertainties and derive the aggregated land-use portfolio. 701
households in the Jambi Province belonging to the tropical lowlands
were surveyed. Details of how the survey was conducted and how
the socioeconomic indicators were calculated are provided in the Sup-
plementary materials (see Section S.1). Thus, our indicators reflect
the variability of socioeconomic conditions and expectations within
smallholder farms in the study region. The derived portfolios do not aim
at representing daily-life decision-making within individual farms, but
rather a generalized land-cover pattern from the perspective of a public
decision-maker — a perspective that may be expected when farmers
consider the respective indicators, and that also accounts for the un-
certainty in the provision of these functions between farms. Thus, the
farmer’s decision-making is exclusively represented in an aggregated
land-use composition and depends solely on the considered indicators
and their uncertainties. The current land-use portfolio is a result of this
average decision-making, including this variability between expected
function provision between farms. We therefore used this plot-level
and survey data to construct average farm portfolios, assuming that
aggregating average farm portfolios sufficiently represents hypothetical
agricultural landscape portfolios that have a potential for adoption by
farmers in the shorter-term.

We conducted sensitivity analyses to assess robustness of our re-
sults to various assumptions. We investigated the influence of altering
indicators for the ecological functions and including new ecological
functions (Table S1). To do this, we altered (1) SSCi with the Effective



V. von Grofs et al.

Table 1
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Overview and description of the predefined ecological and socioeconomic functions and respective indicators used in the optimization process.

Function Indicator Description and source of data Rationale
Structural Stand Structural The SSCi is calculated via the mean Structural complexity is an important driver for enabling
complexity Complexity fractal dimension index that depends biodiversity across trophic levels, habitat structure, and

index (SSCi)

Microclimatic
conditions

Air Temperature
95th percentile

Ecological functions

Organic carbon Carbon Total
in plant biomass Biomass

Soil organic Soil Organic
carbon Carbon

Nutrient Total Dissolved
leaching losses Nitrogen (TDN)

on the density of vegetation elements
and the effective number of layers
describing the vertical stratification
(Ehbrecht et al., 2017; Zemp et al.,
2019). Data source: Zemp et al.
(2019)

Upper 95% percentile for air
temperature (°C). Data source:
Meijide et al. (2018)

Carbon total biomass including
organic carbon (Mg C ha™!) from
fine roots, coarse roots and
aboveground biomass. Data source:
Kotowska et al. (2015)

Soil organic carbon (Mg C ha™') at a
depth of 0 — 0.5 meters. Data source:
Allen et al. (2015)

Total dissolved nitrogen leaching flux
(kg ha™! yr~!). Data source:
Kurniawan et al. (2018)

ecosystem functioning (Perles-Garcia et al., 2021; Zemp

et al., 2023). It has shown positive impacts on abundance,
species richness, litter input or micro-climate (Ehbrecht et al.,
2017; Schuldt et al., 2019), although the impacts depend on
the taxa and the ecosystem function (Zemp et al., 2023).

The maximum temperature is an important indicator of
stability of microclimatic conditions (Clough et al., 2016).
The dramatic and rapid changes in microclimatic conditions
are presumed to contribute to biodiversity loss in tropical
regions (Hardwick et al., 2015; Meijide et al., 2018).
Furthermore, the increasing heat exposure can negatively
impact cognitive performance of rural workers and human
well-being (Masuda et al., 2020).

Conversion of tropical rainforest to agricultural land strongly
influences soil organic carbon stocks, biomass carbon storage
and sequestration and, thus, greenhouse gas emissions (van
Straaten et al., 2015; Kotowska et al., 2015; Fitzherbert

et al., 2008).

TDN is one important indicator for evaluating nutrient
leaching fluxes. High nutrient leaching can have a negative
impact on groundwater quality and cause pollution of
streams and rivers (Clough et al., 2016; Jacobs et al., 2017).

Labor Labor Cost
requirements
Input Material Cost
@
g requirements
k=]
Q
=]
=t .
o Total income to Revenue
& land
=}
=
9]
1 ]
[
S
k3]
<)
wv
Returns to land Profit

Returns to labor Profit per Labor

Cost

Total labor cost required (US dollars
(USD) ha~! yr~!). Data sources:
Sibhatu (2019), Kiihling et al. (2022)

Total material cost required (USD
ha~! yr!). Data sources: Sibhatu
(2019), Kiihling et al. (2022)

Revenue made (USD ha™! yr!;
production output multiplied by
average market price). Data sources:
Sibhatu (2019), Kiihling et al. (2022)

Profit made (USD ha~! yr~';
subtracting labor and input
requirements from Revenue). Data
sources: Sibhatu (2019), Kiihling
et al. (2022)

Profits per invested USD for labor
(dividing profit by labor
requirements). Data sources: Sibhatu
(2019), Kiihling et al. (2022)

Both labor and input requirements can be important
constraints of smallholder farmers that drive land-use
decisions of smallholder farmers (Connelly and Shapiro,
2006; Santos Martin and van Noordwijk, 2011; Clough et al.,
2016). The optimization considers labor and input
requirements separately, as labor and input costs vary widely
among respective land-use types considered.

Increasing income from land-use is expected to be an
important driver for land-use decisions (Grass et al., 2020).
For many households, labor is covered by family labor which
is not explicitly paid. Therefore, Revenue and Profit are
considered separately.

Profitability is an important indicator in selection of land-use
alternatives (Connelly and Shapiro, 2006; Santos Martin and
van Noordwijk, 2011).

Labor is often a limiting variable (Santos Martin and van
Noordwijk, 2011; Clough et al., 2016). At the same time,
increasing profitability is an expected incentive for
smallholder farmers when choosing land-use options. Thus,
profit earned per USD invested is an important variable for
decision-making.

3. Results

Number of Layers, (2) considered depth for Soil Organic Carbon, (3) Air
Temperature 95th percentile with Humidity, Soil Moisture Range, and
Soil Temperature Range, and (4) TDN with Aluminium (Al), Calcium
(Ca) and Magnesium (Mg). Additionally, we added Litter Mass Loss,
N Mineralization, and Methane flux each as an eleventh indicator.
Furthermore, we evaluated the robustness of the portfolios considering
degraded primary forest as an additional land-cover type (Fig. S3),
interpreting the effects as consequences of hypothetical reforestation,
even though this land-cover transformation is currently not practiced.
Lastly, we evaluated the effects of uncertainty by removing the uncer-
tainty. For each analysis, we kept all other assumptions constant (ceteris
paribus).

3.1. Multifunctional landscape portfolio

Optimizing land-use allocation for all ten indicators simultaneously
(i.e., deriving the multifunctional landscape portfolio for the high-
est function richness) resulted in a landscape composition consisting
of approximately equal shares of jungle rubber (41%) and oil palm
plantation (42%), with a smaller share allocated to rubber plantation
(17%) (function richness 10 in Fig. 2b). The dominance of jungle
rubber and oil palm plantations was driven by their superior mean
values across most indicators compared to rubber plantation (Table 2).
Jungle rubber showed the highest mean values for four out of five
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Table 2
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Mean values and standard deviations (uncertainty) for selected indicators of the three land-use types (jungle rubber, oil palm plantation, and
rubber plantation). The superscript letters indicate whether having more or less of an indicator is better. N = number of measured plots (for
ecological indicators) and number of plots from surveyed households (for socioeconomic indicators).

Indicator Unit Jungle rubber Oil palm plantation Rubber plantation
SSCi® index 8 6.85 + 0.81 3.50 + 0.48 4.77 + 1.14

Air Temp. 95th percentile® °C 8 30.20 + 0.50 31.10 + 0.11 31.20 + 0.18
Carbon Total Biomass® Mg C ha™! 8 76.12 + 9.24 43.09 + 8.21 38.35 + 11.46
Soil Organic Carbon® Mg C ha™! 8 106.47 + 36.54 80.57 + 25.84 75.32 + 29.09
Total Dissolved Nitrogen” kg ha! yr! 8 5.35 + 4.97 12.63 + 12.78 4.63 + 2.85
Labor Cost” USD ha ! yr! 824 500.43 + 373.06 179.51 + 151.27 665.40 + 470.48
Material Cost” USD ha! yr! 824 13.87 + 15.27 118.29 + 123.19 29.13 + 28.07
Revenue® USD ha! yr! 824 707.22 + 447.09 949.68 + 628.15 1107.39 + 715.55
Profit® USD ha ! yr! 824 186.80 + 425.03 634.22 + 556.88 394.70 + 728.25
Profit per Labor Cost® usD 824 0.80 + 1.11 9.28 + 18.87 1.31 + 2.32

2 = more is better.

o

= less is better.
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Fig. 2. (a) The current land-use portfolio of farmers, taken from household surveys of 587 farm households (824 plots) in Jambi Province, Indonesia, representing a total area size
of 1520 hectares. (b) Transformation scenario showing the effect of increasing function richness on the optimized land-use portfolio. Optimized portfolios start with the portfolio
most closely explaining the currently observed land-use decision (function richness (1) and end with the portfolio that optimizes all indicators simultaneously (function richness
10). For intermediate portfolios, one more indicator is added to the previous portfolio to increase function richness, where the identity of the added indicator is selected according
to lowest BC when compared with the observed land-use portfolio. (c) The explicit indicator set selected by the model for each level of function richness leading to the respective
portfolios shown in (a). Each of these indicators is equally weighted in the optimization. All portfolios were calculated for an uncertainty factor of two.

ecological indicators (SSCi, Air Temperature, Carbon Total Biomass,
and Soil Organic Carbon), outperforming the alternative options, while
also having the lowest material cost on average. Conversely, oil palm
plantation performed best in three out of five socioeconomic indicators
(Labor Cost, Profit, and Profit per Labor Cost) (Table 2). The only
exceptions were Revenue and Total Dissolved Nitrogen, which showed
the best values for rubber plantations among all land-use types. This
also explained the relatively lower share of rubber plantations in the
optimized land-use portfolio.

Compared to the currently observed land-use portfolio, the multi-
functional portfolio exhibited higher shares of both low management-
intensity jungle rubber and highly productive oil palm plantation (func-
tion richness 10 Fig. 2b). The increase in jungle rubber and oil palm
plantation came at the expense of rubber plantation (compare function
richness 10 Fig. 2b with Fig. 2a). The current land-use composition
was predominantly composed of oil palm (45%) and rubber plantation
(38%), with a relatively low share of 17% allocated to jungle rubber
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(Fig. 2a). This suggests that the composition of the current portfolio
was driven by a different set or number of functions.

The composition of the optimized multifunctional portfolio was
robust when we considered different ecological indicators for the eco-
logical functions, e.g., altering depth for Soil Organic Carbon or using
Humidity for microclimatic conditions (Supplementary Fig. S1). Even
when new ecological functions like Litter Mass Loss were introduced,
the pattern remained largely unchanged (Supplementary Fig. S2). In-
cluding primary degraded forest as an additional land-cover system
shifted the portfolio to 34% forest, 29% jungle rubber, 36% oil palm,
and 1% rubber (Supplementary Fig. S3), reducing rubber plantation
shares by 16 percentage points. This showed that forest in the landscape
portfolio mainly occurred at the expense of rubber plantations, which
were perceived as the least desirable option overall. The composition
of the multifunctional portfolio remained robust when the uncertainty
factor was set to zero (Supplementary Fig. S5).

3.2. Indicator(s) driving current land-use decisions

The analysis of the indicators best explaining current land-use de-
cisions showed that optimizing solely for Profit (function richness 1
in Fig. 2b and Fig. 2c) yielded a portfolio closely resembling the
current land-use portfolio. Optimizing for Profit with an uncertainty
factor of two resulted in a portfolio comprising 18% jungle rubber,
44% oil palm plantation, and 38% rubber plantation. This portfolio
was remarkably similar to the currently observed land-use portfolio
(Fig. 2a), as measured by a BC of only 7.2 (lowest BC possible = 0,
equation (11)).

Further sensitivity analysis demonstrated that our findings are ro-
bust, as different sets of indicators (first bars Supplementary Fig. S1)
consistently highlighted Profit as the primary explanatory indicator
of the current land-use decision (Supplementary Table S2). Variations
arose only when we replaced some indicators of “Nutrient leaching
losses” or “Microclimatic conditions”, i.e., when (1) the TDN indicator
was replaced with Al, which is toxic in dissolved form, or Ca, an impor-
tant base cation, and (2) the Air Temperature 95th percentile indicator
with Humidity. These new indicators became part of the indicator set
best explaining the current land-use portfolio (Supplementary Table
S2). However, Profit consistently remained part of the indicator set
best explaining the current land-use portfolio. Adding various other
ecological functions to the optimization did not alter the dominance
of the Profit indicator in explaining the observed land-use decisions
(Supplementary Table S3). When including primary degraded forest,
the portfolio best explaining the current land-use composition still
relied on a single socioeconomic indicator (Revenue)(Supplementary
Fig. S3). With zero uncertainty, indicators TDN, Profit per Labor Cost,
and Labor Cost best explained current land-use composition.

3.3. Simulating transformation scenarios

From the set of all nine remaining indicators, socioeconomic indi-
cators were added first and had the lowest change in land-use compo-
sition compared to current land-use composition (Fig. 2c¢). This reflects
that the mean values of many socioeconomic indicators showed their
highest levels for the same land-use type. For example, the mean value
of Profit performed best in oil palm plantations (Table 2). Similar
results were observed for indicators Labor Cost and Profit per Labor
Cost, which were added in function richness 3 and 4 (Fig. 2), leading
to an increase of shares of oil palm in the portfolios. However, given the
high proportion of rubber plantation in the current portfolio (Fig. 2a),
the indicator Revenue, which performs best for rubber, was first added
to the indicator set in function richness 2 (Fig. 2b). Overall, adding
additional socioeconomic indicators (function richness 1 to 4) only
slightly affected the share of jungle rubber but increased the percentage
of oil palm plantation at the expense of rubber plantation (Fig. 2).
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As the number of indicators increased, the first ecological indicator
included in the optimization was Total Dissolved Nitrogen at function
richness 5 (Fig. 2). This led to a considerable change in land-use com-
position along the transformation scenario. The proportion of jungle
rubber strongly increased by 17 percentage points between function
richness 4 and 5, while the proportion of oil palm and rubber plantation
reduced by 6 and 11 percentage points, respectively. The BC increased
from 15.2 at function richness 4 to 26.2 at function richness 5. Inter-
estingly, adding just the first ecological indicator already resulted in
a landscape portfolio closely resembling the multifunctional portfolio
(function richness 5 and 10 in Fig. 2b and Fig. 2c). This outcome was
driven by the dominant performance of jungle rubber across average
mean values of various ecological indicators (Table 2). The last two
indicators included in this cumulative analysis were Carbon Total
Biomass and Air Temp. 95th percentile, requiring the largest change
in currently observed portfolios (BC = 27.2 and 27.8, respectively).

The pattern of the transformation scenario (where (1) additional so-
cioeconomic indicators resulted in minor changes in landscape portfolio
followed by (2) considerable changes with the inclusion of ecological
indicators) was robust against changing the ecological indicators for
different ecological functions or adding additional ecological func-
tions (Supplementary Fig. S1 and S2), except for “Nutrient leaching
losses”, where exchanging TDN with indicators Al or Ca resulted in
their inclusion in the indicator set best explaining the current land-
use portfolio. The general pattern persisted when primary degraded
forest was included (Supplementary Fig. S3). Only the identity of
indicators, i.e., at what level of function richness different indicators
were optimized, changed slightly. The indicators Labor and Material
Costs were included in later landscape portfolios (function richness 6
and 8 Supplementary Fig. S3) since forest performed best for these
indicators (Supplementary Table S4). The last two added indicators
were Air Temp. 95th percentile and Carbon Total Biomass (function
richness 9 and 10 in Supplementary Fig. S3).

With zero uncertainty, the transformation scenario followed a sim-
ilar pattern. Apart from TDN (part of the first portfolio), all socioeco-
nomic indicators were optimized first (function richness 3-5 in Sup-
plementary Fig. S5). However, the identities of indicators along this
transformation scenario were different. Material Cost led to first major
changes (function richness 6 in Supplementary Fig. S5), followed by
four ecological indicators, with Carbon Total Biomass and Air Temp.
95th percentile in the concluding two portfolios.

Continuing with the simulation of transformation scenarios, we
conducted a performance analysis to assess trade-offs between achiev-
ing high performance for single indicators and considering multiple
indicators simultaneously. The results showed that as function rich-
ness increased, the minimum guaranteed achievement level (GMAL)
of the indicator set selected by the model for each level of function
richness decreased (Fig. 3a). Optimizing land-use allocation for a single
indicator achieved a minimum performance of 0.61, while optimizing
all indicators simultaneously achieved a lower performance of 0.43.
This indicates that pursuing multifunctionality (high function richness)
comes at the cost of lowering the GMAL compared to landscapes
satisfying fewer functions, highlighting the trade-off between achieving
high performance for single indicators and considering multiple indica-
tors simultaneously. Analyzing the performance of the indicator Profit
illustrated this effect (Fig. 3b). Specifically, the increase in function
richness reduced the GMAL of Profit, i.e., the indicator best explaining
current land-use decisions. The portfolio for a function richness level
of 1, where only Profit is optimized, showed the highest performance
value of 0.61. Increasing function richness by first adding socioeco-
nomic indicators (up to function richness 4) reduced the minimum
achievement level of Profit only slightly to 0.57. Optimizing for the first
ecological indicator (function richness 5) resulted in a sharp decrease
in performance from 0.57 to 0.48. This showed a trade-off between
indicator performance, currently crucial to farmers, and consideration
of additional indicators (higher multifunctionality), highlighting the
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Fig. 3. The guaranteed minimum achievement indicator level (GMAL) from three perspectives. (a) shows the GMAL for each indicator set used to optimize portfolios with increasing
function richness (robust performance of the considered functions) (Fig. 2). For example, all uncertainty scenarios of all five indicators, i.e., function richness of 5, achieve at least
a performance of 0.46. (b) shows the GMAL of solely the indicator Profit (robust performance of currently important function). The minimum achievement level of a function
richness of 1 is thus equal in (a) and (b). (c) shows the GMAL over all ten indicators for each portfolio with increasing function richness (robust multifunctionality). The GMAL

of function richness 10 is thus equal in (a) and (c).

tension between prioritizing the performance of single indicators and
considering additional — particularly, ecological — ones.

However, the opposite trend emerged when examining robust mul-
tifunctionality (representing the GMAL across all ten indicators while
assuming the land-use shares of the portfolios from function richness 1
to 10) (Fig. 3c). The GMAL increased with increasing function richness.
While there was only a slight increase when socioeconomic indicators
were optimized (function richness 1 to 4), including the first ecological
indicator (function richness 5) led to a sharp rise in robust multifunc-
tionality from 0.22 to 0.38. This indicates that a decrease in Profit due
to higher function richness went hand in hand with better performance
across all ten indicators. Including primary degraded forest as an
additional land-cover option showed a similar pattern (Supplementary
Fig. S4a). However, the synergy effect among ecological functions was
much less pronounced. The robust multifunctionality steadily increased
when adding more ecological functions (Supplementary Fig. S4c). In
comparison, the GMAL for purely agricultural portfolios remained rel-
atively stable from function richness 5 onward (Fig. 3c). This difference
arose from much higher and more variable levels of ecological functions
associated with forests.

4. Discussion

We proposed a parsimonious land-use optimization approach to
explore and visualize a transformation scenario with increasing func-
tion richness. Our approach introduces two novel aspects. It automates
identifying the ecological or socioeconomic functions driving current
land-use decisions and precisely identifies each added ecological or so-
cioeconomic function during the increase of function richness. Further-
more, our approach enables the evaluation of robust multifunctionality
as the minimum achievement level of all functions. While the approach
presented here refers to a balanced mix of ecological and socioeconomic
functions from EFForTS, the model is applicable to different regions and
flexible to the conceptual approach of different landscape functions.

4.1. Potential transformation scenarios towards multifunctional landscape

For RQ1, which investigates how a multifunctional landscape port-
folio would look like and how much it deviates from the current
land-use decision, our case study in the Jambi Province reveals a clear
mismatch between compositions of the current landscape portfolio and
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the landscape portfolio that simultaneously considers all indicators in
the optimization, reflecting the highest multifunctionality (see Sec-
tion 3.1). Answering research question two (RQ2), i.e., which indicators
best explain the current land-use decisions, our findings demonstrate
that optimizing for solely profit yields a land-use allocation most similar
to the current one. These findings indicate that farmers’ decisions
are most likely driven by a limited set of socioeconomic functions
rather than aiming for high function richness (multifunctionality). This
aligns with previous research by Feintrenie et al. (2010a), showing
that farmers shift from traditional farming systems to more profitable
options when available to satisfy their livelihood needs. Similar results
have been observed in, e.g., Gosling et al. (2020b), where target land-
use compositions for multifunctional systems differed significantly from
current practices. However, the target land-use composition was very
sensitive to functions considered in the optimization (Knoke et al.,
2016; Gosling et al.,, 2020b). For example, Gosling et al. (2020b)
showed that “immediate” indicators (maintaining liquidity and meet-
ing household consumption needs) best represented the observed land-
use portfolio. The discrepancy between current land-use practices and
the desired multifunctional composition highlights the challenge of
normative approaches in constructive stakeholder discussions when the
current land-use portfolio is not directly considered. For example, sus-
tainable transformation scenarios might be unrealistic to obtain in the
near future, or the identified land-use portfolio might not be achievable
owing to an inability to convert between land-use types (Martin et al.,
2022).

One limitation of the approach remains the missing retrospective
path dependency of current land use. The land-use portfolios defined as
“current” and the data collected are from 2018 and are thus snapshots
in a dynamic system. The indicators may not fully capture historical
and prospective aspects of farmers’ decision-making. For example,
aspects like past policies and incentives and changes in technological
knowledge are not considered. Given that we included mostly perennial
land-use alternatives, decisions on currently observed land use were
made 20-30 years ago under potentially differing indicator values and
functions considered. However, the observed large increase in oil palm
area in recent decades (Chrisendo et al., 2021) suggests that reasons
for 2018 land-use decisions might not have been very different from
historical ones. Our robust approach explicitly integrated uncertainty
in indicator values, while we also carried out extensive sensitivity anal-
yses. Therefore, possible decision-relevant deviations from observed
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indicator values are considered in the model. To capture more than
a snapshot, future research could incorporate dynamic information
on the development of functions over time and the discounting of
indicators, thereby better reflecting time preferences (Jarisch et al.,
2022). Moreover, further indicators like farmer preferences or per-
ceived management complexity from interviews (Gosling et al., 2020a;
Reith et al.,, 2020) could complement so far disregarded decision-
making criteria. However, given the results of robust optimization
and sensitivity analyses, we would not expect that incorporating these
aspects would change the overall patterns found in our study.

Concerning the last research question (RQ3), regarding the effect
of increased function richness on composition and performance of the
land-use portfolios, the transformation scenario reveals that the first
three added functions, which require minor changes in the landscape
portfolio (“low-hanging fruits”), are socioeconomic indicators (Rev-
enue, Labor Cost, Profit per Labor Cost). Including these indicators
results in a larger share of oil palm in the average portfolio, reflecting
the current trend in Jambi, Indonesia. This trend towards larger shares
of oil palm cultivation and a focus primarily on a few socioeconomic
indicators, rather than a high ecological and socioeconomic function
richness, might be reasonable from the perspective of smallholder
farmers. With limited capital and labor, farmers maximize profit based
on their scarcest resource (Feintrenie et al., 2010a), which is often
labor (Santos Martin and van Noordwijk, 2011). Even if oil palm
needs higher investment, increasing the share of land cultivated by oil
palm, which requires less labor than other crops, may be an important
strategy to help address this labor constraint, if financial resources
are available. This is also evident in our study region, where rubber
plantations initially replaced jungle rubber agroforestry, and now the
area of both rubber systems is being reduced by the cultivation of
palm oil plantations (Drescher et al., 2016; Grass et al., 2020). This
trend is also apparent in our transformation scenario, as portfolios
with the highest shares of oil palm are achieved when Labor Cost
(function richness 3) and Profit per Labor Cost (function richness 4)
are added for optimization. This adaption of oil palm cultivation is also
likely to increase further socioeconomic functions not considered here,
e.g., an increase in infrastructure, healthcare facilities, higher returns to
education, and lower poverty rates in respective villages (Kubitza et al.,
2018; Edwards, 2019; Qaim et al., 2020; Chrisendo et al., 2022). In
contrast, it is likely that negative impacts on other ecological functions
not considered here, e.g., water storage and supply (Merten et al.,
2016), pest control (Denan et al., 2020), or pollination (Sodhi et al.,
2010), will also occur.

Despite its simplicity, our approach thus seems to reflect current
trends in land use adequately. However, our mechanistic approach
does not provide exact behavioral predictions, but rather explores
potential trade-offs and synergies between ecological or socioeconomic
functions from a normative perspective. Finding a compromise that
satisfies farmers’ needs while tackling performance loss of ecological
functions is important. As functional richness increases, the transfor-
mation scenario suggests reestablishing the share of traditionally used
jungle rubber agroforestry systems to improve ecological functions.
Historically, in the Jambi Province, jungle rubber was the standard
rubber production system and, therefore, is a well-known practice and
could be easier to reestablish or promote. However, input variables for
jungle rubber used in this study are based on measurements in rubber-
enriched secondary forests. It is important to note that our suggestion
is by no means to convert additional forests. Instead, existing rubber
plantations could be converted to jungle rubber through succession
to enhance the performance of ecological functions. As Zeng et al.
(2021) showed, soil properties significantly improved after a decade
of natural succession in rubber plantations. Furthermore, new land-use
systems that could potentially enhance environmental functions and
narrow trade-offs between these and socioeconomic functions could be
introduced. Examples include ecological enhancement of oil palm plan-
tations through enrichment planting with multi-purpose trees (Zemp
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et al., 2023) or environmentally friendly oil palm management (Iddris
et al., 2023). In addition to the ecological advantages, agroforestry
systems are considered a good diversification strategy to reduce farm-
ers’ exposure to volatilities (Feintrenie and Levang, 2009; Baker et al.,
2017; Waldron et al., 2017). Nevertheless, economic factors play a
crucial role in decision-making (Feintrenie et al., 2010b), so incentives
for systems that enhance ecological functions may require payments
for environmental services or functions (Do et al., 2020; Rudolf et al.,
2022). For example, involvement of smallholders in recently launched
carbon emission credit trading in Indonesia could help enhance certain
ecological functions.

Furthermore, our results show an overall decline in performance
of the Profit indicator as function richness increases, causing oppor-
tunity costs. Since our model is intrinsically relative, we have not
explicitly calculated these costs. If precise cost estimation is required,
our approach allows for calculating additional payments and their
associated uncertainties to achieve a desired share of a land-use type
in the portfolio. This calculation can help determine the extent to
which profit for a specific land-use type needs to increase when op-
timizing profit for it to appear in the portfolio at the required level.
However, our method provides various compromise solutions, allowing
decision-makers to choose between including all or fewer indicators
with reduced performance loss in Profit. This flexibility assists decision-
makers in determining an acceptable compromise and the desired level
of multifunctionality to be achieved. For instance, pursuing one or
more ecological indicators may result in higher farmer costs. There-
fore, economic incentives might be necessary to achieve these goals.
Our approach provides a framework that can support decision-makers
in finding the right balance between ecological and socioeconomic
objectives.

It is also noteworthy that the resulting land-use compositions still
provide important ecological functions despite these functions not be-
ing directly considered in the optimization of lower function richness.
For example, when optimizing solely for Profit, the land-use portfolio
still provides a minimum achievement level across all functions of
0.22 in relation to 0.43 of the multifunctional portfolio. Yet, this
minimum achievement level, as a measure of multifunctionality under
uncertainty, can be considerably increased.

Our study demonstrated that a balanced mix of intensive crops
and environmentally friendly options yields the highest robust mul-
tifunctionality. None of the options offered to the model showed a
single best option to provide multiple ecological or socioeconomic
functions simultaneously. This finding aligns with previous research
by Grass et al. (2019, 2021), demonstrating the effectiveness of combin-
ing land-sharing and land-sparing approaches to design multifunctional
landscapes successfully. Our study also showed the importance of oil
palm plantations in achieving multifunctional portfolios, while rubber
plantations emerged as the least selected land-use option. This result
was robust against altering ecological functions, land-cover alterna-
tives, and uncertainty scenarios. This shows how the approach can
derive robust trends towards desirable land-use mixes without pre-
scribing exact land-use allocations and provides valuable insights for
decision-makers and researchers. The approach is also adaptable to
other regions and other input data due to the parsimonious design
(low data and computational requirements) and the availability of the
method as an R package, optimLanduse (Husmann et al., 2022), which
was further developed and also includes the latest autoSearch function.

4.2. Limitations and outlook

The robust reference point optimization in this study generates a
single best land-use composition for each level of function richness.
Improving one indicator’s performance would require a decrease in
performance of another, reducing the GMAL of the entire portfolio. This
single solution is based on the assumption that the decision-maker aims
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to minimize the distance to the worst-performing scenario of the worst-
performing indicator, which is equivalent to a single global optimum
of a Pareto frontier (Reith et al., 2022). Unlike Pareto optimization, the
whole Pareto-efficient frontier is not directly visualized, which would
be a disadvantage compared to Pareto optimization (Kaim et al., 2018,
2020) and may limit insightful participatory optimization results Wicki
et al. (2021). However, depending on the research question, the model
could be further developed to provide a robust counterpart of the
Pareto-efficient frontier by solving the optimization problem multiple
times using different indicator weights. Such weights could be captured
through an analytical hierarchy process involving stakeholders (Gosling
and Reith, 2020) and incorporated into the model. The computational
efficiency of the optimization allows for direct implementation of the
weights into a Shiny Dashboard (see Data availability), enabling real-
time exploration of different ecological and socioeconomic functions
and their resulting land-use compositions. This process could support a
joint system understanding and co-creation of sustainability pathways
as part of transdisciplinary research (Moallemi et al., 2021).

The low computational time and required resources open the ap-
proach for interactive modeling with stakeholder or batch analyses.
However, it comes at the cost of assuming linearity, i.e., mainly pro-
portionality and additivity (Reith et al., 2022). Additivity implies a
constant marginal contribution from each indicator as land-use area
changes, while proportionality assumes that total landscape perfor-
mance is the sum of individual landscape performances, indicating a
linear relationship (Reith et al., 2022). Consequently, the current model
is not designed to handle non-linear relationships during optimization.
However, additional constraints can be incorporated into the model
to address such assumption limitations. For example, Knoke et al.
(2020) incorporated dynamic deforestation into the modeling approach
by periodically updating the initial landscape compositions during
optimization.

Our approach provides plausible and consistent results concern-
ing the overall trade-offs between ecological and socioeconomic func-
tions of different land-use compositions. Here, we focus on composi-
tional diversity of landscapes as an essential determinant for ecosystem
functioning (Turkelboom et al., 2018; Arroyo-Rodriguez et al., 2020).
However, future research could improve the representation of con-
figurational diversity and connectivity, which are crucial factors for
designing multifunctional landscapes (Lavorel et al., 2022). By con-
struction of the method used, it is currently not possible to consider
correlations between the land-use options, which means that, e.g., the
spatial configuration or neighborhood effects of the land-use options
cannot yet be included in the optimization. We, therefore, only in-
cluded indicators that are directly proportional to land area and have
only limited impact on neighborhood or connectivity of habitat. The
R package optimLanduse can be further developed to implement hard
constraints and consider different indicator values for sub-strata or
regions, allowing for optimization results to be interpreted as groups of
spaces or systems (Husmann et al., 2022). Additionally, the modeling
approach could apply to decision-maker heterogeneity (i.e., variability
in objective functions and expectations on future function provision,
see Knoke et al. (2023)) or interaction between decision agents. Such
processes have been developed for ABMs, e.g., learning processes (Dis-
lich et al., 2018), and could also be integrated into this approach in the
future, but only at the cost of non-linear relationships and endogenous
effects, which usually increase computational needs. For this kind of
question, ABMs have a high potential for representing issues related
to agent or ecosystem connectivity (Paul et al., 2019; Reith et al.,
2022). Furthermore, it would be possible to design hybrid approaches,
e.g., the combination of parsimonious linear multi-criteria optimization
and structurally complex ABMs (Paul et al., 2019), as well as using a
rule-based approach combined with our optimization and a Geographic
Information System (GIS) to generate spatially explicit results (Palma
et al., 2007; Knoke et al., 2016).
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5. Conclusion

Our model serves as a valuable tool to identify the ecological and
socioeconomic functions best explaining current land-use decisions and
to design theoretical transformation scenarios between the identified
function(s) of the current land-use decision and a portfolio satisfying a
wide range of socioeconomic and ecological functions, directly account-
ing for uncertainty. Although our case study focuses on smallholder
farmers in the Jambi Province, Indonesia, the model is applicable to
different regions and landscapes worldwide because of its flexibility
in utilizing diverse data sources and its small data and computational
requirements. The comparison between current landscape portfolio and
multifunctional landscape portfolio derived from our dataset reveals an
apparent mismatch. Optimizing the Profit indicator best explains the
composition of the current portfolio, showing that farmers currently
prioritize economic benefits. The optimization of further socioeconomic
functions can be achieved with only minimal changes in landscape com-
position (“low-hanging fruit”). However, more extensive changes are
required to satisfy even a single ecological indicator in the landscape
portfolio (“moonshot”). These changes inevitably come at the expense
of decreased performance in the Profit indicator. This highlights the
need for economic incentives to offset this decrease, particularly con-
sidering that large areas of existing oil palm plantations are due for
replanting in the near future.
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